Research paper

Genetic and environmental-genetic interaction rules for the myopia based on a family exposed to risk from a myopic environment

Li Wenbo, Bai Congxia, Liu Hui⁎

College of Medical Laboratory, Dalian Medical University, Dalian 116044, China

ABSTRACT

Objective: To quantitatively assess the role of heredity and environmental factors in myopia based on the family with enough exposed to risk from myopic environment for establishment of environmental and genetic index (EGI).

Methods: A pedigree analysis unit was defined as one child (university student), father, and mother. Information pertaining to visual acuity, experience in participating in the college entrance examination in mainland of China (regarded as a strong environmental risk for myopia), and occupation for pedigree analysis units were obtained. The difference between effect of both genetic and environmental factors (myopia prevalence in children with two myopic parents) and environmental factors (myopia prevalence in children of whom neither parent was myopic) was defined as the EGI. Multiple regression analysis was performed for 114 pedigree using diopters of father, mother, average diopters in parents, maximum and minimum diopters in father and mother as variables.

Results: A distinct difference in myopia rate (96.2% versus 57.7%) was observed for children from parents with myopia and parents without myopia (EGI = 0.385). The maximum diopter was included to regression equation which was statistically significant. The prevalence of myopia was 9.9% in the farmer. The prevalence in children is similar between the farmer and other families.

Conclusion: A new genetic rule that myopia in children was directly related with maximum diopters in father and mother may be suggested. Environmental factors may play a leading role in the formation of myopia.

1. Introduction

Myopia or nearsightedness is one of the most common human eye disorders, of which there is a high prevalence in Asian populations (30%-50%) (He et al., 2009; Sawada et al., 2008; Xiang et al., 2013). Over 80% of urban school children in China develop myopia (Sun et al., 2012; You et al., 2012). Although the cause of myopia is unknown, many studies have shown that environmental and genetic factors are jointly involved in myopia development (Shi et al., 2011). While environmental factors, such as the time spent indoors and visual close work, are capable of causing myopia (French et al., 2013; Lee et al., 2013; Pan et al., 2012), evidence for a genetic component to myopia is provided by population genetics or family studies (Yoshikawa et al., 2014; Li et al., 2015; Jiang et al., 2014). However, results regarding the extent of environmental and genetic factor involvement in the development of myopia differ due to inconsistent research methods and subjects. Most of such studies have confirmed the role of genetic factors in high myopia development through population observation (Yoshikawa et al., 2014; Li et al., 2015; Jiang et al., 2014), pedigree analysis (Jiang et al., 2014; Li et al., 2013; Tran-Viet et al., 2013), and twin methods (monozygotic and dizygotic twins) (Adenuga, 2014; Kim et al., 2013; Lee et al., 2012); however, the reliability of these results is questionable due to the lack of environmental factor control.

Environmental risk factors for myopia include close work; myopia prevalence is very low in occupations without prolonged close work, such as in farmers (Pärssinen, 1987). This means that a person is unlikely to develop myopia even if he/she has susceptibility genes for myopia if there are no environmental risk factors. Therefore, we can deduce that even using the twin method, only myopia resulting from environmental risk factors can be identified; this method is unable to determine whether a non-myopic person is affected as a result of the presence of anti-myopic genes or the lack of a myopia-inducing environment. Therefore, control of environmental factors is very important for studying any disease to which both environmental and genetic factors contribute.

For myopia, the evidence of genetic factors is substantial and
environmental risk factors are generally clear and relatively simple and occurrence of myopia are not relative with aging; therefore, myopia is also an ideal model for studying diseases jointly involving environmental and genetic factors. In this study, adolescents participating in close work (students participating in the college entrance examination in the People's Republic of China) and their parents with participating in the college entrance examination in China were enrolled as subjects, so that we could simultaneously determine the contribution of genetic factors and environmental factors to provide basic data for in-depth research and strategies for the prevention of myopia and diseases with similar etiologies.

2. Materials and methods

2.1. Subjects and grouping

The farmer group was derived from 353 farmers; the control group comprised 237 non-farmer subjects, whose occupations included office worker, teacher, businessman, and civil servant. The number of subjects with myopia was compared between the two groups for observing a environmental role in myopia.

The farmer family group comprised 162 families in which both the father and mother were farmers and their child was a university student; 104 families in which neither the father nor the mother were farmers and their child was a university student were considered the control group. The percentage of children with myopia was compared between the two groups for observing a genetic role in myopia.

A total of 114 Chinese university students aged 18–22 years and their biological parents were enrolled as subjects for assessment of genetic rule. Each of these students and their parent pair were treated as a family, in which both the father and mother had experience participating in the college entrance examination in the People's Republic of China.

Three groups were divided for above 114 families for assessment of both environmental and genetic roles. The myopia family group comprised 62 families, in which both the father and mother suffered from myopia; the one-sided myopia family group comprised 26 families in which only the father or mother suffered from myopia; 26 families in which both the father and mother with normal visual acuity were considered the control group.

All students (children in the family) were unrelated ethnic Han Chinese individuals from urban or rural areas of the People's Republic of China and had participated in the college entrance examination in the People's Republic of China. None of the subjects had known ocular diseases or insults that could predispose them to myopia; nor did any of them have a known genetic disease associated with myopia, such as Stickler or Marfan syndrome.

The Institutional Ethics Committee of Dalian Medical University approved the study and waived the need for written informed consent from the participants due to the observational nature of the study.

2.2. Data collection

Data of the student and their parents were collected through self-reporting by each individual. Information included visual acuity, experience participating in the college entrance examination in the People's Republic of China, and occupation.

The diagnosis of myopia was determined by the refractive error. Myopia was defined with a refractive error less than −0.50 diopters (D), and controls with +0.50 to −0.50 D. Myopia was further classified as physiologic (less than −0.50 D to greater than −6.00 D) and pathologic (equal or less than −6.00 D). It was accepted for anisometropia of 3.00D or less; average refractive error of the two eyes was considered as the refractive error value for anisometric individuals. Individuals with anisometropia over 3.00D should be excluded from study.

2.3. Assessment of genetic role

In evaluating the genetic role in myopia, the dioptries in young adults (children) were applied as the dependent variable, while the father diopters, mother diopters, average diopters in father and mother, maximum diopters in father and mother, minimum diopters in father and mother were used as the independent variables. Subsequently, multiple regression analysis (Backward method) was performed on the collected data. When the multiple regression equation was statistically significant, the indicator was considered to be influenced by genetic factors, whose degree was measured with R².

2.4. Assessment of environmental and genetic roles

The myopia family group, in which both the father and mother suffered from myopia, represent the total effect of genetic susceptibility (G) and environmental factors (E); this total effect could be represented with children incidence in myopia family group (Pd) as following equation:

\[
P_d = G + E
\]

The non-myopia family group, in which both the father and mother had experience participating in the college entrance examination in the People’s Republic of China (environmental factors) with normal visual acuity, represent the environmental factors (E); this total effect could be represented with incidence of children from non-myopia family group (Pn) as following equation:

\[
P_n = E
\]

The genetic predisposition (G) could be represented according to above two equation as follow:

\[
P_d - P_n = (G + E) - E = G, \quad P_d > P_n
\]

Range of G was 0–1.0. Because sum of environmental and genetic roles in occurrence of disease was 1.0, the difference between Pd and Pn is was defined as the Environmental and Genetic Index (EGI).

\[
EGI = P_d - P_n
\]

where Pd represented percentage of individual with a disease in the disease family group; Pn represented percentage of individual with a disease in non-disease family group. Range of EGI was 0–1. A greater EGI indicates that the effect of genetic factors is more significant and the environmental effect is smaller.

2.5. Statistical analyses

Dioptries of children with myopia were described in terms of quartile values because of their non-normal distribution. The Mann–Whitney U test was used to analyze differences among groups and the Chi-squared test was used to analyze differences in binary outcomes between the two groups.

Data were considered statistically significant when the probability of a type I error was 0.05 or less. Calculations were performed using the Windows version of SPSS (Statistical Package for Social Sciences) 13.0 software (SPSS Inc., Chicago, IL, USA).

3. Results

The prevalence of myopia in the farmer and control groups is shown in Table 1. The prevalence of myopia in the farmer group was significantly lower than that in the control group (P < 0.05).

The prevalence of myopia in children from farmer families and other families is shown in Table 2. Results indicate that the prevalence of myopia in children is similar between the two groups (P > 0.05).

We further assessed genetic rule in myopia with multiple regression equation; the variable of father diopters, mother diopters, average diopters in parents were removed from the equation; the maximum and
genes in farmers is similar to that in non-farmers. The very low prevalence of myopia in farmers is the result of lack of risk factors for myopia. It also suggests that, in the absence of environmental risk factors, myopia does not occur even if susceptibility genes are present, and thus environmental risk factors are a necessary condition for myopia.

Myopia will occur in most students with a genetic predisposition after the college entrance examination, and this sight impairment will rarely recover naturally (Morgan, 2003; Donovan et al., 2012; Holden et al., 2014). Thus, parents and children participating in the college entrance exams were enrolled as research subjects in this study to explore a role for genetics in myopic pathogenesis. Our results showed distinct differences in myopia rates in the two groups (children from parents with or without myopia), indicating the existence of a genetic influence in myopia.

It has been reported that myopia is inherited polygenically (Sun et al., 2015; Cuellar-Partida et al., 2016; Zhang, 2015; Gordon-Shaag et al., 2015), thus the probability of children carrying the susceptibility gene of myopia is high if both parents are myopic. Therefore, from the perspective of this population, if both parents are myopic, their children should be deemed as carriers of myopia susceptibility genes. Moreover, in the presence of environmental risk factors, the prevalence of myopia depends on both genetic and environmental risk factors and the level of myopia prevalence reflects the strength of genetic and environmental factors.

Conversely, if both parents with experience of the college entrance exams are not myopic, their children can still be regarded as carriers without myopia susceptibility genes. In the presence of environmental risk factors, the prevalence of myopia depends on environmental risk factors and the prevalence of myopia reflects the role of these environmental risk factors.

The difference between the effects of both genetic and environmental factors (myopia prevalence in children with two myopic parents) and environmental factors (myopia prevalence in children with two parents who were not myopic) was defined as the Environmental and Genetic Index (EGI); EGI comprehensively reflects both the effects of genetic factors and environmental factors. Our result reveals that the EGI is 0.385, suggesting that genetic factors may play the 38.5% role in the formation of myopia and environmental factors may play the 61.5% role in the formation of myopia.

Upon the evaluation of myopia formation with heredity, the multiple regression analysis was performed with the father diopters, mother diopters, average diopters in father and mother, maximum diopters in father and mother as the independent variables. The maximum diopter was included to regression equation which was statistically significant, suggesting that the formation of myopia in children was directly related with maximum diopter in father and mother rather than diopters of father, mother or average diopters of father and mother.

Our results reveal that the prevalence of myopia in college students with two farmer parents is similar to that of other college students with two non-farmer parents. This suggests that the distribution of myopia

Table 1

<table>
<thead>
<tr>
<th>Group</th>
<th>Non-myopia</th>
<th>Myopia</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Physiologic</td>
<td>Pathologic</td>
<td></td>
</tr>
<tr>
<td>Farmer</td>
<td>318 (90.1%)</td>
<td>29 (8.2%)</td>
<td>6 (1.7%)</td>
</tr>
<tr>
<td>Control</td>
<td>154 (65.0%)</td>
<td>72 (30.4%)</td>
<td>11 (4.6%)</td>
</tr>
<tr>
<td>P (x^2)</td>
<td>< 0.001 (56.123)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Children from families</th>
<th>Non-myopia</th>
<th>Myopia</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Physiologic</td>
<td>Pathologic</td>
<td></td>
</tr>
<tr>
<td>Farmer</td>
<td>37 (22.8%)</td>
<td>110 (67.9%)</td>
<td>15 (9.3%)</td>
</tr>
<tr>
<td>Control</td>
<td>16 (15.4%)</td>
<td>80 (76.9%)</td>
<td>8 (7.7%)</td>
</tr>
<tr>
<td>P (x^2)</td>
<td>0.263 (2.668)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3

<table>
<thead>
<tr>
<th>Variable</th>
<th>B</th>
<th>SE</th>
<th>P</th>
<th>95% CI for B</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max D</td>
<td>0.445</td>
<td>0.112</td>
<td>< 0.001</td>
<td>0.222-0.667</td>
<td>0.336</td>
</tr>
<tr>
<td>Min D</td>
<td>0.228</td>
<td>0.126</td>
<td>0.072</td>
<td>$< 0.021-0.478$</td>
<td></td>
</tr>
<tr>
<td>Average D</td>
<td>Removed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Father D</td>
<td>Removed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mother D</td>
<td>Removed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Minimum diopters in father and mother remained in the equation as shown in Table 3.

Initial data of children from parents with or without myopia are shown in Table 4. We observed distinct differences between the two groups ($P < 0.05$) and the EGI was 0.385. We also observed that prevalence in children with two myopic parents was close to that in the one-sided myopia family group (only the father or mother suffered from myopia).

Table 4

<table>
<thead>
<tr>
<th>Parents with or without myopia</th>
<th>Dipters in children (quartile)</th>
<th>Myopia rate in children</th>
<th>EGI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25th</td>
<td>50th</td>
<td>75th</td>
</tr>
<tr>
<td>With myopia</td>
<td>300.0</td>
<td>412.5</td>
<td>575.0</td>
</tr>
<tr>
<td>Without myopia</td>
<td>0.0</td>
<td>112.5</td>
<td>237.5</td>
</tr>
<tr>
<td>One-side parent with myopia</td>
<td>300.0</td>
<td>350.0</td>
<td>500.0</td>
</tr>
<tr>
<td>P</td>
<td>< 0.001</td>
<td>< 0.001</td>
<td></td>
</tr>
</tbody>
</table>

4. Discussion

It is generally accepted that both genetic and environmental factors are related to myopia pathogenesis (Shi et al., 2011). The results of the present study show a very low prevalence of myopia in farmers, suggesting that time spent outdoors influences myopic development and environmental factors have important roles in myopia occurrence.

Due to the fierce competition in the college entrance examination in the People’s Republic of China, the myopia rate in these prospective students exceeds 70% (considerably higher than the rate in a random population) as they are required to engage in prolonged periods of close work. This association suggests that it is reasonable to regard college entrance examination as an environmental risk factor for myopia.

Our results reveal that the prevalence of myopia in college students with two farmer parents is similar to that of other college students with two non-farmer parents. This suggests that the distribution of myopia...
with R^2 obtained from the regression equation in this study, suggesting that the EGI model is accurate.

Most complex diseases are caused by the combination of environmental and genetic factors, such as cancer. Therefore, myopia is also an ideal model for studying diseases involving both environmental and genetic factors because data can be obtained and observed more easily and reliably compared with other complex diseases. Our new model with the difference prevalence in children between the two parents with disease and two parents without disease was easy to understand to simplify complex issue and complex calculations could be avoided with comparing heritability evaluation using the liability threshold model (Reich et al., 1972; Reich et al., 1979).

The new genetic rule for myopia indicates that prevalence of myopia in children depend on the one-sided myopia family group (first-degree relatives), suggesting that genetic rule for complex diseases may be overestimated with traditional heritability evaluation because that prevalence of disease shall be multiplied by two for first-degree relatives in traditional method (Docherty et al., 2015; Chou et al., 2016).

According to the EGI, as for most complex diseases with lower prevalences; the prevalence in children in disease-free-parents group may be regarded as 0%. Therefore, the EGI is mainly used to observe the prevalence of such diseases in children from disease-parents groups or one-side disease-parents groups, which is estimated to be rarely > 50%. Disease occurrence is mainly attributable to acquired factors or non-genetic factor, such as environmental factors and aging that are the main basis for complex diseases caused by the combination of environmental and genetic factors. Our data also suggest that environmental factors play a leading role in the pattern of myopia occurrence. Therefore, myopia can be regarded as a complex disease that is attributable mainly to non-genetic factors, such as environmental factors, that are both preventable and controllable.

Conflicts of interest
The authors declare no conflict of interest.

Acknowledgments
We thank Guo Yujie, Zhou Beibei, Han Tingting, Zhou Yixuan, Bai Yifan for their help with data acquisition.

References