Characterization and \textit{in vivo} evaluation of laser sintered dental endosseous implants in dogs

Lukasz Witek,1 Charles Marin,2 Rodrigo Granato,2 Estevam A. Bonfante,2 Felipe Campos,3 Julio Bisinotto,3 Marcelo Suzuki,4 Paulo G. Coelho1,5

1Department of Biomaterials and Biomimetics, New York University, New York, New York
2Postgraduate Program in Dentistry, UNIGRANRIO University - School of Health Sciences, Duque de Caxias, RJ, Brazil
3Department of Oral and Maxillofacial Surgery, Universidade Federal de Uberlandia, Uberlandia, MG, Brazil
4Department of Prosthodontics, Tufts University School of Dental Medicine, Boston, Massachusetts
5Department of Periodontology and Implant Dentistry, Director for Research, New York University College of Dentistry, New York, New York

Received 28 October 2011; revised 25 March 2012; accepted 31 March 2012
Published online 12 June 2012 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/jbm.b.32725

Abstract: Laser metal sintering has shown promising results, but no comparison with other commercially available surface has been performed. This study sought to evaluate the biomechanical and histological early bone response to laser sintered implants relative to alumina-blasted/acid-etched (AB/AE). Surface topography was characterized by scanning electron microscopy and optical interferometry. Surface chemistry was assessed by x-ray photoelectron spectroscopy. Beagle dogs ($n = 18$) received 4 Ti-6Al-4V implants (one per surface) in each radius, remaining for 1, 3, and 6 weeks ($n = 6$ dogs per evaluation time) \textit{in vivo}. Bone-to-implant contact (BIC) and bone area fraction occupancy (BAFO) were evaluated. Biomechanical evaluation comprised torque-to-interface failure. The laser sintered surface presented higher S_a and S_q than AB/AE. Chemistry assessment showed the alloy metallic components along with adsorbed carbon species. Significantly higher torque was observed at 1 ($p < 0.02$) and 6 week ($p < 0.02$) for the laser sintered, whereas at 3 week no significant differences were observed. Significantly higher BIC and BAFO was observed for the Laser Sintered ($p < 0.04$, and $p < 0.03$, respectively) only at 1 week, whereas no significant differences were observed at 3 and 6 weeks. The laser sintered implants presented biocompatible and osseoconductive properties and improved biomechanical response compared with the AB/AE surface only at 1 and 6 weeks \textit{in vivo}. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 100B: 1566–1573, 2012.

Key Words: dental implant, biomechanical, laser, histology

INTRODUCTION

Research trends have emphasized toward implant design modifications capable of improving the early host implant tissue response1 and therefore hastening healing time. The main benefit would be the potential reduction in treatment time frames through prosthetic restorations that could be placed in occlusal function earlier than originally recommended protocols.1–3

Among implant design modifications attempting to improve the host-to-implant response, implant surface modifications have been extensively investigated.1–6 The rationale for surface modification lies upon the fact that it is the first part of the implant to interact with biofluids, which potentially alters the cascade of events that lead to bone healing and intimate apposition with the device.7 Several reviews cover the large number of possibilities included in implant surface modifications, and it is a general consensus that both rough surfaces (over smooth turned surfaces) and surface chemistry (additions of Ca-P–based bioceramics in various forms over noncoated surfaces) may favor the early host-to-implant response.1,5,6,8

Whereas implant surface texturing is usually accomplished after the implant device is milled to its desired stock shape, surface roughness may be tailored by its fabrication method such as in laser metal sintering.9 The process is based on rapid prototyping, where the constructed CAD file is built by a metal forming procedure with a high-power laser beam focused on a metal powder bed and programmed to fuse particles creating a thin metal layer. The process continues until the apposition of layers results in the final shape of the 3D projected device.10,11 The resulting surface is porous with functionally graded structures where a gradient of porosity is observed perpendicular to the long axis, high porosity at the surface and the constituting core material that may be selected to suit the device’s intended use. In addition, a repeated porous pattern with

interconnected pore network has been described after the laser sintering process, potentially improving osseointegration. Since the graded structure decreases the discrepancy between the elastic modulus of titanium and that of surrounding bone, a desirable reduction in the interface stress has also been claimed. The laser sintering process has a wide range of applications for producing temporary or permanent implantable devices, especially when a design is needed to provide an implant’s proper structural and biological function. Although the existing in vitro and in vivo data on laser metal sintering shows promising results, qualitative and quantitative histological comparisons with other commercially available implant surfaces along with biomechanical testing is yet to be understood. Thus, the present study biomechanically (torque-to-interface failure) and histomorphometrically evaluated the effect of laser sintering compared to alumina-blasted/acid-etched implant (AB/AE) surface modifications in the early bone response in a beagle model. We have hypothesized that the intricate surface topography resulting from laser sintering would improve early biomechanical and histomorphometric parameters compared with an AB/AE implant surface.

MATERIALS AND METHODS

The implants used in this study were Ti-6Al-4V screw type implants with 3.75 mm of diameter and 10 mm in length provided by the manufacturer (AB-Dental, Nir Galim, Israel). A total of 86 implants were used and divided in two groups according to surface treatment: Laser Sintered (experimental) and Alumina-Blasted/Acid-Etched (AB/AE) (control) (n = 38 per group). The remaining implants (n = 10) were used for surface characterization. Specific detail regarding the processing parameters of the surfaces was not provided from the manufacturer. It has been suggested that while high throughput fabrication may be achieved, all dimensional tolerances must be observed during the post fabrication steps, as well as the potential void inclusion during the sintering process.

Surface characterization

The surface characterization was accomplished utilizing three different methods. First, scanning electron microscopy (SEM) (Philips XL 30, Eindhoven, The Netherlands) was performed at various magnifications under an acceleration voltage of 15 kV to observe the different groups’ surface topography (n = 1 per group).

The second step was to determine the roughness parameters by optical interferometry (OFM) (Phase View 2.5, Palaiseau, France). Three implants of each surface were evaluated at the flat region of the implant cutting edges (three measurements per implant) and Sₐ (arithmetic average high deviation) and S₁ (root mean square) parameters determined. A filter size of 250 × 250 µm² was utilized. Following data normality verification, statistical analysis at 95% level of significance was performed by one-way ANOVA.

The third procedure was the surface specific chemical assessment performed by x-ray photoelectron spectroscopy (XPS). The implants were inserted in a vacuum transfer chamber and degassed to 10⁻⁷ torr. The samples were then transferred under vacuum to a Kratos Axi 165 multitechnique XPS spectrometer (Kratos Analytical, Chestnut Ridge, NY). Survey spectra were obtained using a 165 mm mean radius concentric hemispherical analyzer operated at constant pass energy of 160 eV for survey and 80 eV for high resolution scans. The take off angle was 90° and a spot size of 150 × 150 µm² was used. The implant surfaces were evaluated at various locations (three per implant).

In vivo model and surgical procedure

The in vivo study comprised of 18 adult male beagles of ~1.5 years old. The study was approved by the Ethics Committee for Animal Research at the École Nationale Vétérinaire d’Alfort (Maisons-Alfort, Val-de-Marne, France). The beagles remained in the facility for 2 weeks prior to the surgical procedures.

For surgery, three drugs were administered until general anesthesia achievement by intramuscular injection. The drugs were atropine sulfate (0.044 mg/kg), xylazine chlorate (8 mg/kg), and ketamine chlorate (15 mg/kg). The implantation site was the radius epiphysis. Batches of six beagles were utilized for each evaluation time in vivo, where each animal received one implant of each group in each radii (one limb provided sample for biomechanical testing and the other for histologic evaluation).

For implant placement, the surgical site was shaved with a razor blade followed by application of antiseptic iodine solution. An incision of ~5 cm through the skin and periosteum was performed and the periosteum was elevated for bone exposure.

Sequential drills were utilized following the manufacturer’s recommendation at 1200 rpm under abundant saline irrigation. The different implant groups were alternately placed from proximal to distal at distances of 1 cm from each other along the central region of the bone. The starting implant surface was also alternated between dogs to minimize bias in the torque and histomorphometric evaluation.

After placement the healing caps were inserted and sutured in layers with vicryl 4-0 (Ethicon Johnson, Miami, FL) for periosteum and nylon 4-0 (Ethicon Johnson, Miami, FL) for skin. The dogs stayed in animal care facility and received antibiotic (Benzyl Penicillin Benzatine 20.000 UI/Kg) and anti-inflammatory (Ketoprofen 1% 1 mL/5 kg) medication to control the pain and infection. Euthanasia was performed after 1, 3, and 6 weeks by anesthesia overdose and the limbs were retrieved by sharp dissection.

Torque testing was performed immediately after euthanization. The radius was adapted to an electronic torque machine equipped with a 500 Ncm torque load cell (Test Resources, Shakopee, MN). Custom machined tooling was adapted to each implant’s internal connection and the bone block was carefully positioned to avoid specimen misalignment during testing. The implants were torqued in counter clockwise direction at a rate of ~0.196 radians/min and a torque versus displacement curve was recorded for each specimen.
Histomorphometric analysis

The implants in bone were reduced to blocks and immersed in 10% buffered formalin solution for 24 h. The blocks were then washed in running water for 24 h, and gradually dehydrated in a series of alcohol solutions ranging from 70 to 100% ethanol. Following dehydration, the samples were embedded in a methacrylate-based resin (Technovit 9100, Heraeus Kulzer GmbH, Wehrheim, Germany) according to the manufacturer's instructions. The blocks were then cut into slices (~300 µm thickness) aiming the center of the implant along its long axis with a precision diamond saw (Isomet 2000, Buehler, Lake Bluff), glued to acrylic plates with an acrylate-based cement, and a 24 h setting time was allowed prior to grinding and polishing. The sections were then reduced to a final thickness of ~30 µm by means of a series of SiC abrasive papers (400, 600, 800, 1200, and 2400) (Buehler, Lake Bluff, IL) in a grinding/polishing machine (Metaserv 3000, Buehler, Lake Bluff, IL) under water irrigation. The sections were then toluidine blue stained and referred to optical microscopy for histomorphologic evaluation.

The bone-to-implant contact (BIC) was determined at 50× to 200× magnification (Leica DM2500M, Leica Microsystems GmbH, Wetzlar, Germany) by means of a computer software (Leica Application Suite, Leica Microsystems GmbH, Wetzlar, Germany). The regions of bone-to-implant contact along the implant perimeter were subtracted from the total implant perimeter, and calculations were performed to determine the BIC. The bone area fraction occupied (BAFO) between threads in trabecular bone regions was determined at 100× magnification (Leica DM2500M, Leica Microsystems GmbH, Wetzlar, Germany) by means of computer software (Leica Application Suite, Leica Microsystems GmbH, Wetzlar, Germany). The areas occupied by bone were subtracted from the total area between threads, and calculations were performed to determine the BAFO (reported in percentage values of bone area fraction occupied).

Preliminary statistical analyses showed no effect of implant site (i.e., there were no consistent effects of positions 1 and 2 along the radius) on all measurements. Therefore, site was not considered further in the analysis. Statistical evaluation of torque, BIC, and BAFO was performed by Friedman's test. Statistical significance was indicated by p-values less than 5%.

FIGURE 1. SEM of Alumina-Blasted/Acid-Etched (a and c) and Laser Sintered (b and d) presented different surface roughness morphology, which can be seen at low and high magnification.
RESULTS
Surface characterization
Implant surfaces' electron micrographs are presented in Figure 1 and their representative 250 μm × 250 μm IFM three-dimensional reconstructions, in Figure 2(A,B). Their respective S_a and S_q values are presented in Figure 2(C,D). The surface texture observed at intermediate and high magnification levels (Figure 1), as well as the IFM

![Image of three-dimensional reconstructions](image)

TABLE I. X-Ray Photoelectron Spectroscopy Atomic Percentages for the AB/AE and Laser Sintered Implants

<table>
<thead>
<tr>
<th></th>
<th>Al2p</th>
<th>C1s</th>
<th>O1s</th>
<th>Ti2p</th>
<th>V2p3</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB/AE</td>
<td>3.43 (1.2)</td>
<td>31.82 (4.2)</td>
<td>45.3 (3.3)</td>
<td>13.21 (2.2)</td>
<td>0.43 (0.15)</td>
</tr>
<tr>
<td>Laser sintered</td>
<td>2.88 (0.9)</td>
<td>42.1 (3.8)</td>
<td>35.09 (2.8)</td>
<td>10.64 (3.2)</td>
<td>0.21 (0.11)</td>
</tr>
</tbody>
</table>

Mean (± SD).
reconstruction [Figure 2(A,B)] revealed morphologic differences between the two groups. The IFM measurements presented significant differences for both S_a and S_q values [Figure 2(C)], where the experimental (laser sintered) implant presented the higher values. Mean S_a and S_q values were 0.56 μm (0.11 μm, 95% CI) and 0.66 μm (0.11 μm, 95% CI) for AB/AE and 1.26 μm and 1.59 μm for Laser Sintered, respectively (0.35 μm and 0.38 μm, 95% CI).

The XPS spectra demonstrated the presence of Al, C, O, Ti, and V for the different surfaces (Table I). The highest aluminum concentration was observed for the AB/AE likely due to the alumina blasting procedure. Higher O, Ti, and V concentrations were observed for the AB/AE surface. Conversely, higher C values were detected for the experimental (laser sintered) surface (Table I).

In vivo model
The animal surgical procedures and follow-up demonstrated no complications regarding procedural conditions, postoperative infection, or other clinical concerns. No implants were excluded from the study due to clinical instability immediately after the euthanization.

The biomechanical testing showed that significantly higher torque to interface fracture was observed for the experimental surface relative to control at 1 week ($p = 0.011$), but that at 3 weeks no differences were observed between surfaces ($p = 0.129$). At 6 weeks, a significantly higher removal torque ($p < 0.002$) was observed for the experimental surface in comparison to the control (Figure 3).

The nondecalcified sample processing showed intimate bone contact with all implant surfaces at regions of cortical and trabecular bone (Figure 4). Qualitative evaluation of the toluidine blue stained thin sections revealed no morphologic differences between surfaces at 1 and 3 weeks in vivo, where intimate contact between cortical and trabecular bone was observed. In addition, different healing patterns were observed at specific regions along the implant bulk, depending on the interplay between device geometry and surgical instrumentation dimensions (Figure 4).

At the region of the implant where the inner thread diameter was larger or equal the final surgical drilling dimension allowing intimate contact between implant surface and cortical bone immediately after implantation, substantial bone remodeling in proximity with the implant surface occurred between 1 [Figure 4(A,D)] and 3 [Figure 4(B,E)] weeks in vivo for all groups. While at 1 week in vivo old bone remodeling was observed along with regions of newly formed woven bone [Figure 4(A,D)], at 3 weeks substantial woven bone was observed in proximity with the implant surface [Figure 4(B,E)].

At regions where a healing chamber was formed due to the formation of a space between the outer diameter of the surgical instrumentation and the inner diameter of the implant, woven bone formation was observed throughout the space of the chamber and directly onto the implant surface at 3 weeks in vivo [Figure 4(B,E)]. At 6 weeks, woven bone replacement by lamellar bone was observed throughout the healing chamber [Figure 4(C,D)] in both groups.

At trabecular bone regions, newly formed woven bone was observed at 3 weeks [Figure 4(B,E)], and its replacement by lamellar bone was observed at 6 weeks [Figure 4(C,F)] at regions in proximity with all implant surfaces.

The histomorphometric results demonstrated a significant difference between experimental groups for BIC at 1 week in vivo ($p < 0.04$) with the laser sintered having a higher value, whereas the 3 and 6 weeks in vivo exhibited no significant differences between groups ($p > 0.40$ and $p > 0.11$, respectively – Figure 3(A)). The same trend was observed for BAFO, where a significant difference was
observed at 1 week (significantly higher for laser sintered, \(p < 0.03 \)), but not at 3, and 6 weeks in vivo \([p > 0.70, \text{and } p > 0.60, \text{respectively—Figure 3(B)}] \).

DISCUSSION
Both histomorphometric parameters evaluated in this study were significantly higher for the laser sintered compared with the AB/AE only in the first week evaluation with values being not significantly different at the subsequent observation periods (3 and 6 weeks in vivo). As per the imaging results, the three-dimensional surface configuration of the laser sintered implant may have provided larger surface area during the early stages of wound healing with increased blood clot retention compared to the AB/AE. General BIC and BAFO measurements were in agreement with the biomechanical results, where torque was significantly higher for the laser sintered at 1 week and then not significantly different to the AB/AE at 3 weeks. At 6 weeks when more time was allowed for early bone healing, the histomorphometric results remained not significantly different between groups whereas significantly higher torque was observed for the experimental relative to the control implant group. The 6 weeks results for BIC and BAFO constrasting with torque-to-interface failure test is in agreement with the claim that static osseointegration histomorphometric parameters may fail to represent the bone/implant interface mechanical properties. From a clinical standpoint, lower BIC and BAFO may be preferred on a higher mechanical property bone implant interface compared with a higher BIC and BAFO on a lower mechanical property bone that may yield reduced stability.\(^1\)

The implant surface physical characterization showed that both arithmetic mean of the absolute values of the surface height within the sampling area and the root mean square of the surface departures were significantly higher for the laser sintered relative to AB/AE surface. It is possible that the observed 1 week significantly higher torque for the laser sintered relative to the AB/AE is likely a function of the higher resistance to torque provided by the increased surface texture of the former, and should not be suggestive as a motivation for immediate loading since the following observation period (3 weeks) revealed no statistical difference in torque between groups. At early observation periods, such as 1 week, torque resistance seems to be highly influenced by surface topography since osseointegration process is at its very initial stage.\(^1\) The similar results obtained at 3 weeks may be elucidated by the described early bone healing events shown for screw-root form implants with healing chambers where intense bone remodeling and resorption is observed at the regions where the interplay between surgical techniques and implant macrodesign allows an intimate contact between bone and implant.\(^17,19–22\) Because at 3 week woven bone was under formation at healing chamber regions and bone resorption was occurring at the implant outer threads, torque levels were similar irrespective of implant group. However, with initial lamellar bone formation in the healing chamber region, the significant increase in torque values at 6 week
for the laser sintered suggests that the surface topography was an important factor for improved bone response. The S_s mean value (1.26 μm) for the laser sintered fell within the moderately rough range, shown to provide the strongest bone response compared to minimally rough (S_s 0.5–1 μm) surfaces such as the AB/AE (0.56 μm).\(^{23}\)

From a temporal standpoint, both topographic and chemistry surface modifications have drawn attention\(^{1,3,6,24,25}\) as both have been showing promising results in vitro\(^{26}\) and in vivo\(^{27–35}\) relative to their moderately rough predecessors. As for implant physical modifications at the nanometric scale, the resulting surface configuration that can be tailored on a laser sintered implant for improved bone response is yet to be understood. Several processing parameters seem to have an effect on the final surface topography of laser sintered implants and likely on its osseointegrative properties. Open Biomater J 2010;2:18–35.

An in vitro study comparing acid-etched and laser sintered titanium surfaces has shown improved osteoblastic differentiation, production of bone morphogenetic protein, vascular endothelial growth factor and specific bone proteins for the laser sintered suggesting that the surface topography of laser sintered implants and likely on its osseointegrative properties, such as the power rating of the laser, the diameter of the laser beam focus, the scanning speed, the average particle size of the starting material powder, the process atmospheric conditions and others.\(^{36}\) Nonetheless, our surface chemistry results are suggestive that only bio-compatible elements along with adsorbed carbon species were present at the surface indicating that the fabrication technique was suitable for biomedical applications. Therefore, future investigation with variations in such processing parameters along with surface physico-chemical characterization and in vivo experimentation is warranted.

Table 1: Comparison of Laser Sintered Implant Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Laser Sintered</th>
<th>Acid-Etched</th>
<th>Other Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topography</td>
<td>High</td>
<td>Low</td>
<td>Moderate</td>
</tr>
<tr>
<td>Surface Chemistry</td>
<td>Slightly modified</td>
<td>Unmodified</td>
<td>Moderate modification</td>
</tr>
<tr>
<td>Bone Density</td>
<td>Increased</td>
<td>Decreased</td>
<td>No Change</td>
</tr>
</tbody>
</table>

Although several animal models, such as the rabbit, pig, sheep, goat, and others could suit in vivo research, the canine model has shown close similarity in bone composition to that of human,\(^{39}\) and has been indicated as one of the most appropriate for the testing of implant materials.\(^{40}\) Differences in remodeling rate must be acknowledged and have been reported for example between the canine model and human.\(^{41}\)

Our postulated hypothesis that laser sintered implants would improve early biomechanical and histomorphometric parameters compared to an AB/AE implant surface was partially accepted, since only higher torque to interface failure was observed at 1 and 6 week, but no differences were found for BIC and BAFO.

REFERENCES
