Metformin increases liver accumulation of vitamin B12 – An experimental study in rats

E. Greibe, J.W. Miller, S.H. Foutouhi, R. Green, E. Nexo

Department of Clinical Biochemistry, Aarhus University Hospital, 8000 Aarhus, Denmark
Department of Pathology and Laboratory Medicine, UC Davis Medical Center, Sacramento, CA 95817, USA

Aims/hypothesis: Patients treated with metformin exhibit low levels of plasma vitamin B12 (B12), and are considered at risk for developing B12 deficiency. In this study, we investigated the effect of metformin treatment on B12 uptake and distribution in rats.

Methods: Sprague Dawley rats (n = 18) were divided into two groups and given daily subcutaneous injections with metformin or saline (control) for three weeks. Following this, the animals received an oral dose of radio-labeled B12 (\(^{57}\)Co-B12), and urine and feces were collected for 24 h. Plasma, bowel content, liver, and kidneys were collected and analyzed for B12, unsaturated B12-binding capacity, and \(^{57}\)Co-B12.

Results: Three weeks of metformin treatment reduced plasma B12 by 22% or (47–383) pmol/L (median and [range]) (p = 0.001), while no effect was observed on unsaturated B12-binding capacity. Compared with controls, the amount of B12 in the liver was 36% (p = 0.007) higher in metformin-treated rats, while the B12 content in the kidney was 34% (p = 0.013) lower. No difference in the total amount of absorbed \(^{57}\)Co-B12 present in the tissues and organs studied was found, suggesting that metformin has no decreasing effect on the B12 absorption.

Conclusions/interpretation: These results show that metformin treatment increases liver accumulation of B12, thereby resulting in decreases in circulating B12 and kidney accumulation of the vitamin. Our data questions whether the low plasma B12 observed in patients treated with metformin reflects impaired B12 status, and rather suggests altered tissue distribution and metabolism of the vitamin.
Use Committee, and conducted at the animal facility at UC Davis Medical Center, Sacramento, CA, USA, where the rats were housed in a controlled environment (22.0 ± 0.5 °C) with a 12 h light–dark cycle. The rats were fed a normal stock laboratory diet (Laboratory Rodent Diet 5001, LabDiet, PMI Nutrition International, Richmond, Indiana, USA) containing 50 μg/kg B12 throughout the study. Food and water were administered ad libitum. The rats weighed 267 [228–282] g (median and [range]) at the beginning of the experiment.

2.2. Experimental design

Prior to the experiment (day 0), rats were weighed, and a blood sample was taken by puncture of the sublingual vein with a 23 gauge needle. For 21 days, the animals were given daily subcutaneous injections (23 gauge needle) in the skin of the neck with either metformin or saline. The experimental group (n = 9) received 250 mg/kg/day metformin (Actavis, Stjønneapoteket (Danish pharmacy), Aarhus, Denmark) dissolved in 1 ml of 0.9% saline water, while the control group (n = 9) received injections with 1 ml of 0.9% saline water. On day 21, all rats (non-fasted) received an oral dose of 1 pmol 57Co-labeled B12 (57Co-B$_2$) (∼5000 Bq) (MP Biomedical, Santa Ana, CA, USA) in a total volume of 0.75 ml 1% sugar water. The oral dose was given by gastric gavage using a curved 20 gauge feeding needle, and the rats were subsequently placed in individual metabolic cages designed to collect urine and feces. After 24 h, the rats were anaesthetized by an intraperitoneal injection of 200 μl Beuthanasia-D special (Schering-Plough Animal Health, Elkhorn, Nebraska, USA), and blood was taken from the dorsal aorta to exsanguination. Immediately after the blood was drawn, liver and kidneys from each animal were excised, cut into smaller pieces, and frozen in liquid nitrogen.

2.3. Sample preparations and protein extractions

Blood samples, taken before (day 0) and after (day 21) treatment, were collected into lithium heparin tubes, and plasma was removed after centrifugation at room temperature at 1200 rpm for 15 min and stored at −80 °C until analysis. Protein extractions of liver and kidney tissues (approx. 1 ml buffer per 1 g tissue) were carried out by homogenization on ice as previously described [8].

2.4. Biochemical measurements

Measurement of radioactivity (57Co) in rat tissues and fluids was performed on a Cobra II Auto-Gamma Counter (Packard, Meriden, CT, USA). Total B$_2$ was measured using the Cobas 6000 E immunoassay system (Roche Diagnostics, Hvidovre, Denmark) with a detection range of 55–1476 pmol. Protein extracts were diluted 1:100 (liver) and 1:1000 (kidney) in the dilution reagent supplied by the manufacturer prior to B$_2$ measurements. Unsaturated B$_2$-binding capacity (UB$_2$BC) was measured as described by Gottlieb et al. [9]. In brief, 100 μl sample was incubated with 25 μl 57Co-B$_2$ (5 nM) (Kem-En-Tec, Taastrup, Denmark) in 200 μl 0.1% phosphate-buffered bovine albumin (PBA) for 15 min, followed by addition of 500 μl hemoglobin-coated charcoal solution to precipitate unbound B$_2$. The charcoal solution was prepared by mixing equal volumes of a 5% aqueous suspension of activated charcoal (Sigma–Aldrich, Broendby, Denmark) with a 0.5% aqueous solution of bovine hemoglobin (Becton Dickinson, Broendby, Denmark). After an additional 10 min of incubation, charcoal-bound B$_2$ was precipitated by centrifugation for 10 min at 2600 × g. Finally, the supernatants were measured for radioactivity.

2.5. Statistics

The D’Agostino-Pearson omnibus test was used to determine if data followed the Gaussian distribution. For normally distributed data, differences in 57Co and B$_2$ content in tissues and fluids between the metformin group and the control group was determined by a two-tailed t-test for unpaired data. To compare the changes between “before treatment” and “after treatment” within the respective groups, we used a two-tailed paired t-test. Values of p ≤ 0.05 were accepted as statistically significant. Only the data on liver size (g) for the metformin-treated rats was found not to follow the Gaussian distribution, and this could not be achieved by logarithmic transformation. For determining differences in liver size between the metformin group and the control group, the nonparametric Mann–Whitney test for unpaired data was used.

3. Results

We investigated the effect of metformin treatment on the absorption and tissue distribution of B$_2$ in a rat model. Rats were treated with subcutaneous injections of metformin (metformin group) or saline (control group) for three weeks before given an oral dose of 57Co-B$_2$. Urine and fecal matter were collected for 24 h after the per-oral administration. At this time, the rats were killed, and organs and fluids were harvested for measurement of total B$_2$, UB$_2$BC, and 57Co-B$_2$. Table 1 compares the physiological parameters for the two groups of rats. The metformin rats gained a little less weight than the control rats.

Three weeks of metformin treatment reduced plasma B$_2$ by 22% or 289 [47-383] pmol/L (median and [range]) (p = 0.001). No change in plasma B$_2$ was observed in the control rats (Fig. 1A). No change in UB$_2$BC was observed in either group (Fig. 1B). Total B$_2$ present in the liver was an average of 36% or 170 [-140-871] pmol/g wet tissue higher (p = 0.007) in metformin-treated rats, while the B$_2$ content in the kidney was an average of 34% or 1211 [750-5500] pmol/g wet tissue lower (p = 0.013) than in the control rats (Fig. 2). The metformin-treated rats showed a small increase in plasma 57Co-B$_2$ 24 h after the oral 57Co-B$_2$ administration. The increase was an average of 7 Bq (0.17% [0.03-0.19]% of the given dose) (p = 0.036). No differences in levels of 57Co-B$_2$ between the metformin-treated rats and the control rats were found in feces, bowel content, urine, kidney and liver 24 h after oral administration of 57Co-B$_2$ (data not shown).

Table 1

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Metformin-treated rats (n = 9)</th>
<th>Control rats (n = 9)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight (g) (before study)</td>
<td>258 [228-282]</td>
<td>269 [241-282]</td>
<td>0.27</td>
</tr>
<tr>
<td>Weight (g) (after study)</td>
<td>280 [235-312]</td>
<td>297 [268-319]</td>
<td>0.10</td>
</tr>
<tr>
<td>Weight increase (%)</td>
<td>8.4 [3-10]</td>
<td>10.3 [7.3-14.7]</td>
<td>0.02</td>
</tr>
<tr>
<td>Kidneys (g) (after study)</td>
<td>3.4 [2.6-3.7]</td>
<td>3.6 [3.1-3.7]</td>
<td>0.14</td>
</tr>
<tr>
<td>Liver (g) (after study)</td>
<td>7.8 [7.3-8]</td>
<td>7.5 [7.3-8]</td>
<td>0.27</td>
</tr>
</tbody>
</table>

Physiological parameters for metformin-treated rats and control rats. Values are given as median and [range]. For kidneys, the weight is given as the mean of the sum of both kidneys. Differences between the two groups were compared using unpaired t-tests. p-values ≤ 0.05 are considered statistically significant.
mechanism. Despite this weakness, several interesting results can be extracted from our study. We report an association between metformin treatment and increased accumulation of B$_{12}$ in rat liver. Since a decrease in liver B$_{12}$ is one of the first signs of B$_{12}$ deficiency [10], this observation contradicts the hypothesis that metformin induces B$_{12}$ deficiency.

At first, these data appear contradictory. Metformin induced a decrease in plasma B$_{12}$, but the total amount of absorbed 57Co-B$_{12}$ present in tissues and organs studied were comparable between the two groups, suggesting that no decrease in B$_{12}$ absorption took place in the metformin-treated rats. Also, contradictory, is the finding of reduced kidney B$_{12}$ combined with an increased level of liver B$_{12}$. The design of the study did not allow for determination of a mechanism for these changes, but the data indicate that in this rat model, metformin does not decrease the absorptive capacity of B$_{12}$, nor does it lead to liver depletion of B$_{12}$. The data suggest that the decline in plasma B$_{12}$ is because of increased accumulation of B$_{12}$ in the liver (and possibly other organs), and not caused by a metformin-induced B$_{12}$ malabsorption. These findings are in accordance with new findings by Obeid et al. (this issue) that diabetes patients on metformin treatment have increased cellular uptake of B$_{12}$ and normal intracellular metabolic markers despite a low B$_{12}$ plasma status [11].

The finding of decreased B$_{12}$ levels in the kidney is coincident with the reduction in circulating B$_{12}$. The kidneys obtain B$_{12}$ partly due to clearance from blood and partly from traditional cellular uptake seen in all tissues [3]. The finding that kidney B$_{12}$ is an order of magnitude higher than liver B$_{12}$ is consistent with earlier studies on rodents [12,13].

In conclusion, our data suggest that metformin treatment increases the accumulation of B$_{12}$ in the liver, thereby resulting in a decrease in circulating B$_{12}$ and in kidney accumulation of the vitamin. We see no evidence that the B$_{12}$ absorption mechanism is influenced negatively by metformin. This questions whether low plasma B$_{12}$ observed in patients treated with metformin reflects impaired B$_{12}$ status, and rather suggests altered tissue distribution and metabolism of the vitamin.

Acknowledgments

We thank Katrine Bremer for technical assistance.

References

