Carrier Transport in High-Mobility III–V Quantum-Well Transistors and Performance Impact for High-Speed Low-Power Logic Applications

Gilbert Dewey, Mantu K. Hudait, Kangho Lee, Ravi Pillarisetty, Willy Rachmady, Marko Radosavljevic, Titash Rakshit, and Robert Chau, Fellow, IEEE

Abstract—DC and high-frequency device characteristics of In$_{0.7}$Ga$_{0.3}$As and InSb quantum-well field-effect transistors (QWFETs) are measured and benchmarked against state-of-the-art strained silicon (Si) nMOSFET devices, all measured on the same test bench. Saturation current (I_{on}) gain of 20% is observed in the In$_{0.7}$Ga$_{0.3}$As QWFET over the strained Si nMOSFET at ($V_g - V_t$) = 0.3 V, $V_{ds} = 0.5$ V, and matched I_{off}, despite higher external resistance and large gate-to-channel thickness. To understand the gain in I_{on}, the effective carrier velocities (v_{eff}) near the source-end are extracted and it is observed that at constant ($V_g - V_t$) = 0.3 V and V_{ds} = 0.5 V, the v_{eff} of In$_{0.7}$Ga$_{0.3}$As and InSb QWFETs are 4–5× higher than that of strained silicon (Si) nMOSFETs due to the lower effective carrier mass in the QWFETs. The product of v_{eff} and charge density (n_i), which is a measure of “intrinsic” device characteristics, for the QWFETs is 50%–70% higher than strained Si at low-voltage operation despite lower n_i in QWFETs. Calibrated simulations of In$_{0.7}$Ga$_{0.3}$As QWFETs with reduced gate-to-channel thickness and external resistance matched to the strained Si nMOSFET suggest that the higher v_{eff} will result in more than 80% I_{on} increase over strained Si nMOSFETs at V_{ds} = 0.5 V, ($V_g - V_t$) = 0.3 V, and matched I_{off}, thus showing promise for future high-speed and low-power logic applications.

Index Terms—Effective carrier velocity, InGaAs, InSb, quantum-well devices, silicon, III–V materials.

I. INTRODUCTION

As SILICON CMOS technology continues to scale in accordance with Moore’s Law, energy efficiency becomes increasingly important. A common method of curtailing the rising power consumption that accompanies an increasing number of transistors per chip is to scale supply voltage while maintaining transistor and circuit performance. III–V compound semiconductor-based quantum-well field-effect transistors (QWFETs) have been proposed as a promising device option because of high-speed switching at very low supply voltages enabled by the excellent low- and high-field electron transport properties of III–V semiconductors [1]. At supply voltages of less than 0.7 V, III–V QWFETs have shown a significant reduction in energy-delay product compared to state-of-the-art silicon nMOSFETs [2], [3]. To quantify the power-performance advantage of short channel III–V devices with respect to current state-of-the-art strained Si, we investigate the role of effective carrier velocity in the channel and its impact on transistor drive current.

In this letter, effective carrier velocities at the source end of In$_{0.7}$Ga$_{0.3}$As and InSb QWFETs are extracted and benchmarked against state-of-the-art strained Si nMOSFETs. These Si devices incorporate high-n and metal gates [4]. DC and high-frequency device characteristics of QWFETs are also analyzed and benchmarked against the strained Si nMOSFETs all measured on the same test bench. Both measurement and simulation data are used to show the potential drive current benefits of In$_{0.7}$Ga$_{0.3}$As QWFETs over Si at low-voltage operation.

II. EFFECTIVE CARRIER VELOCITY AND ITS EXTRACTION

Effective carrier velocity (v_{eff}) is determined from the intrinsic saturated transconductance and capacitance [5]

$$v_{eff} = g_{mi} / (WC_{gi})$$

(1)

where g_{mi} is the saturated transconductance corrected for parasitic resistance (R_{ad}), W is the width of the device, and C_{gi} is the intrinsic gate capacitance per unit area. The value of C_{gi} for III–V devices cannot directly be measured since they use Schottky gates. In this letter, both C_{gi} and g_{mi} for both the Si and III–V devices are determined using high-frequency measurements and a small signal equivalent circuit model [6], [7]. The high-frequency response was measured from 1 to 50 GHz. Fig. 1(a) shows that the simulated S parameters based on the small signal equivalent circuit model are equivalent to the measured S parameters, and that the measured and extracted gate-source capacitance (C_{gs}) is independent of frequency. The rms error of less than 2% between measured and modeled S parameters, and the frequency independent signature of small signal circuit elements allow for accurate extraction of g_{mi} and the total gate capacitance ($C_{gs} + C_{gd}$), where (C_{gd}) is the gate-drain capacitance. C_{gi} is determined from the slope of
(C_{gs} + C_{gd})/W versus the various physical gate lengths of the devices. The table in Fig. 1(b) shows the bias conditions, C_{gi}, n_s, measured g_m, and extracted g_{mi} of the different material systems. The larger correction from g_{mi} to g_{mi} in the III–V QWFET cases compared to the strained Si is due to 2–3× higher total external resistance (R_{ext}) in the former.

The intrinsic drive current (I_{oni}) is related to the effective carrier velocity $v_{eff}(x_0)$ in the channel by [8]

$$I_{oni}/W = v_{eff}(x_0) C_{gi}^* (V_g - V_i) = v_{eff}(x_0) n_s$$ \hspace{1cm} (2)

where x_0 corresponds to the conduction band peak at the source side of the channel, V_i is the transistor threshold voltage using the standard linear peak transconductance extraction method, and n_s is channel charge density at the source end. Because full $C_{gi} - V_g$ curves are not available for III–V QWFETs, n_s is approximated using ($C_{gi}^* (V_g - V_i) / q$), where C_{gi}^* is the channel capacitance at $V_d = 0.05 \text{V}$. The v_{eff} determined from the intrinsic transconductance method as defined in (1) can be used as an approximation of $v_{eff}(x_0)$ with the understanding that $v_{eff}(x_0)$ may be overestimated by 15%–30% [8].

III. Devices

The InSb and In$_{0.7}$Ga$_{0.3}$As quantum-well transistors were fabricated using standard processing techniques [1], [3]. For the InSb QWFETs, the InSb quantum well is 20 nm thick with a room-temperature Hall mobility of 20 000–30 000 cm2/V·s at a sheet carrier density of 1.3 × 1012 cm$^{-2}$. The physical gate insulator thickness (T_{ins}), which is the wide bandgap semiconductor thickness between the Schottky gate and the quantum well of the device, is ~9 nm. For the two In$_{0.7}$Ga$_{0.3}$As QWFET cases, the physical gate insulator thickness is ~6 nm and ~8 nm. The quantum well is 13 nm thick with a room-temperature Hall mobility of 10 000 cm2/V·s at a sheet carrier density of 3.5 × 1012 cm$^{-2}$. The physical gate length of the InSb and In$_{0.7}$Ga$_{0.3}$As QWFETs ranges from 60 to 200 nm. The strained Si nMOSFET devices have thin gate oxide and physical gate lengths ranging from 30 to 60 nm.

IV. Results and Discussion

The effective carrier velocities of the various devices are shown versus DIBL in Fig. 2. At a constant DIBL of ~150 mV/V, the 8-nm T_{ins} In$_{0.7}$Ga$_{0.3}$As, the 6-nm T_{ins} In$_{0.7}$Ga$_{0.3}$As, and the 9-nm T_{ins} InSb QWFETs show 3.7×, 4.1×, and 5× increase in v_{eff} over strained Si, respectively.

![Electron Effective Velocity vs DIBL](image)

Fig. 2. Effective electron velocity versus DIBL for In$_{0.7}$Ga$_{0.3}$As with T_{ins} of 6 and 8 nm, InSb with T_{ins} of 9 nm and strained Si nMOSFET at $V_{ds} = 0.5 \text{V}$ and a gate overdrive of ($V_g - V_i$) = 0.3 V. At a constant DIBL of 150 mV/V, In$_{0.7}$Ga$_{0.3}$As (8 nm), In$_{0.7}$Ga$_{0.3}$As (6 nm), and InSb (9 nm) show 3.7×, 4.1×, and 5× increase in v_{eff} over strained Si, respectively.

Fig. 1. (a) Inset depicts simulated S parameters based on the small signal equivalent circuit model compared to the measured S parameters from 1 to 50 GHz. Gate to source capacitances (C_{gs}) simulated by the circuit model and extracted from the measured S parameters of the device are shown to be independent of frequency. The rms error of less than 2% between measured and modeled S parameters and the frequency independent signature of all small signal circuit elements allow for accurate extraction of g_{mi} and C_{gi}. (b) Table shows the bias conditions, C_{gi}, n_s as defined by ($C_{gi}^* (V_g - V_i) / q$), measured g_m, and g_{mi} of the different material systems at a constant DIBL of 150 mV/V ± 5 mV/V.

![Small Signal Circuit Model](image)
for logic applications, the resulting gate overdrive is \(\sim 0.3 \) V. At \(V_g - V_t = 0.3 \) V, the In\(_{0.7}\)Ga\(_{0.3}\)As QWFET shows a \(\sim 55\% \) gain in \(I_{on} \) over the strained Si nMOSFET [Fig. 3(a)]. This demonstrates that despite lower \(n_s \), III–V QWFETs can exhibit higher \(I_{on} \) than strained Si due to higher \(\nu_{eff} \). In addition, Fig. 3(b) shows that \(g_m \) of the In\(_{0.7}\)Ga\(_{0.3}\)As QWFET peaks at a lower \((V_g - V_t) \) value compared to that of the strained Si nMOSFET. This indicates that III–V QWFETs have a performance advantage over strained Si at low-voltage operation.

Finally, the room temperature transfer and output characteristics obtained for the 80-nm physical gate length In\(_{0.7}\)Ga\(_{0.3}\)As QWFET \((T_{ins} = 6 \) nm) and the 40-nm physical gate length strained Si nMOSFET are shown in Fig. 4(a) and (b), respectively. Because the Si device has a \(V_t \) of 0.36 V and the In\(_{0.7}\)Ga\(_{0.3}\)As has a \(V_t \) of 0.1 V, the transfer characteristics are shown versus \(V_g - V_t \). \(V_t \) is calculated in all cases using the standard linear peak transconductance extraction method. In Fig. 4(a) and (b), DIBL and subthreshold slope of the In\(_{0.7}\)Ga\(_{0.3}\)As and Si devices are matched at \(\sim 150 \) mV/V and \(\sim 90 \) mV/dec, respectively. At \(V_{ds} = 0.5 \) V and \(V_g - V_t = 0.3 \) V, \(I_{on} \) for the In\(_{0.7}\)Ga\(_{0.3}\)As and Si devices is 0.36 and 0.29 mA/\(\mu \)m, respectively. This occurs despite the fact that with current processing conditions, In\(_{0.7}\)Ga\(_{0.3}\)As devices exhibit a thicker gate-to-channel separation and \(\sim 2 \times \) higher external resistance \((R_{sd}) \) than the Si nMOSFETs. To further examine performance benefits, simulation based on a coupled 2-D Poisson and a single effective mass-based nonequilibrium Green’s function method [9], [10] was first calibrated to the In\(_{0.7}\)Ga\(_{0.3}\)As QWFET data. Next, with \(R_{sd} \) matched to strained Si and \(T_{ins} \) scaled down to 2 nm, the simulation projects that the In\(_{0.7}\)Ga\(_{0.3}\)As QWFET can exhibit > 80% improvement in \(I_{on} \) over the Si device at equivalent \(I_{off} \) as shown in Fig. 4(a).

V. CONCLUSION

The effective carrier velocities for InSb and In\(_{0.7}\)Ga\(_{0.3}\)As QWFETs, and state-of-the-art strained Si nMOSFET devices are extracted using an intrinsic transconductance method. It is observed that despite lower charge density, the effective carrier velocities of the high-mobility In\(_{0.7}\)Ga\(_{0.3}\)As and InSb QWFETs exhibit a 4.1\(\times \) and 5\(\times \) increase, respectively, over that of strained Si nMOSFETs at a constant DIBL. The increase in \(\nu_{eff} \)
in the In$_{0.7}$Ga$_{0.3}$As QWFET translates to 20% improvement in I_{on} over the strained Si nMOSFET at matched DIBL, I_{off},

$$(V_g - V_T) = 0.3 \text{ V}, \text{ and at } V_{ds} = 0.5 \text{ V},$$

despite a thick T_{ins} and $\sim 2 \times$ higher R_{sd}. At R_{sd} matched to strained Si and T_{ins} scaled to 2 nm, it is possible for the In$_{0.7}$Ga$_{0.3}$As QWFET to exhibit $> 80\%$ I_{on} increase over the strained Si nMOSFET, making the III–V QWFET a promising candidate for future high-speed and ultralow-power logic applications.

REFERENCES

