Bioinformatics of antimicrobial resistance in the age of molecular epidemiology
Andrew G McArthur and Gerard D Wright

Antimicrobial resistance is a global health challenge and has an evolutionary trajectory ranging from proto-resistance in the environment to untreatable clinical pathogens. Resistance is not static, as pathogenic strains can move among patient populations and individual resistance genes can move among pathogens. Effective treatment of resistant infections, antimicrobial stewardship, and new drug discovery increasingly rely upon genotype information, powered by decreasing costs of DNA sequencing. These new approaches will require advances in microbial informatics, particularly in development of reference databases of molecular determinants such as our Comprehensive Antibiotic Resistance Database and clinical metadata, new algorithms for prediction of resistome and resistance phenotype from genotype, and new protocols for global collection and sharing of high-throughput molecular epidemiology data.

Address
M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON, Canada L8S 4K1

Corresponding author: McArthur, Andrew G (mcarthua@mcmaster.ca)

Current Opinion in Microbiology 2015, 27:45-50
This review comes from a themed issue on Antimicrobials
Edited by Paul M Dunman and Andrew P Tomaras
For a complete overview see the Issue and the Editorial
Available online 31st July 2015
http://dx.doi.org/10.1016/j.mib.2015.07.004
1369-5274/c 2015 Elsevier Ltd. All rights reserved.

Introduction
Antimicrobial resistance (AMR) is among the most pressing health crises of the 21st Century [1,2]. The low estimate for global deaths due to drug resistant microbial infections now is 700,000 annually, but without intervention is predicted to be 10 million annually by 2050, with an associated global cost of 100 trillion USD and global 2–3.5% drop in gross domestic product (GDP) (UK Review on Antimicrobial Resistance, amr-review.org). These numbers are staggering, yet antibiotics are important not only to treat bacterial infection, but also enable much of modern medicine. Interventions such as heart surgery, joint replacements, cancer chemotherapy, and transplantation all require robust prophylactic control of infection and thus require antibiotics. In short, without antibiotics we lose much of modern medicine, and increasingly we have fewer antibiotics because of resistance. We are at risk of entering a ‘post-antibiotic era’ [1].

Despite the importance of resistance to health, the field has been slow to take advantage of genome scale tools. Rather, laboratory-based phenotype criteria dominate the epidemiology of antibiotic action and effectiveness. As a result, there is a poor understanding of which antibiotic resistance genes are in circulation, which ones are a threat, and how clinicians and public health workers can manage the crisis of resistance. Importantly, there is generally no effort to link phenotype to actual resistance genes. In the absence of a robust pipeline of new drugs coming to market, understanding the genomic basis of resistance and its movement through bacterial and patient communities is essential for judicious management of increasingly scarce antibiotics and to guide new drug discovery. Fortunately, DNA sequencing is rapidly decreasing in cost and as such we are on the cusp of an era of high-throughput molecular epidemiology. Consequently, we need tools for rapid, accurate analysis of DNA sequence data for the genetic underpinnings of antibiotic resistance. Additionally, we need a long-term plan for best use of these data when DNA sequencing of pathogens becomes commonplace at every hospital, clinic, and outbreak. In an effort to address this problem, we have created the Comprehensive Antibiotic Resistance Database (CARD; arpcard.mcmaster.ca) [3*].

The CARD is a rigorously curated collection of known resistance determinants and associated antibiotics, organized by the Antibiotic Resistance Ontology (ARO), a theoretical framework for organizing antibiotic resistance information. The CARD also includes a predictive tool, the Resistance Gene Identifier (RGI), which predicts known antibiotic resistance elements from genome sequence data. These first steps in the development of the CARD are already proving highly useful to a number of researchers and public health investigators, yet are in many ways reflective of traditional design of biological databases. Our ultimate goal is to transform the CARD from a traditional biological database to a powerful tool for wide-spread generation, analysis, and sharing of data on the molecular epidemiology of antibiotic resistance.

High quality reference data
The use of genome sequencing to aid diagnostics and affect clinical outcomes involves the methods of comparative
genomics and requires high quality reference data. There have been attempts to build databases of antibiotic resistance elements in the past. The Bush–Jacoby β-lactamase list is exclusively focused on compiling an inventory of a small subset of resistance genes [4], the ARDB was an effort to generate a preliminary antibiotic resistance gene ontology and gene catalog, but has not been updated since 2009 [5], and BacMet catalogs metal and biocide resistance genes that may additionally drive antibiotic resistance [6]. All of these are laborious manual cataloging efforts, making their translation to high-throughput diagnostics difficult. The first stages of the CARD have not been dissimilar. To date, the data in CARD are hand-curated to ensure high quality entries and includes genes and their products, plasmids, compounds (antibiotics and other relevant chemicals such as inhibitors of resistance), classification of pathogens, and associated literature references. The resistance gene information in CARD is linked to entries in PubChem, PubMed, GenBank and the PDB (Protein Data Bank), providing a seamless association with literature and chemical and drug databases. Key to this development of the CARD has been the establishment of the Antibiotic Resistance Ontology (ARO). Ontologies are controlled vocabularies that form the foundation of genome bioinformatics; they provide a robust vocabulary for genes and their products that link them to their activities and enable robust investigation of molecular data [7]. The ARO thus provides a unifying language specific to antibiotic resistance that enables codification of resistance and target genes, drugs, and molecular activities germane to the field. It is a critical step toward development of standards for data sharing among disparate research teams and databases working on AMR and can be readily downloaded from the CARD website.

The CARD seeks to acquire curated information on resistance mechanisms, genes, and their targets to create a rich resource for development of algorithms for prediction of antibiotic resistance from genome sequence. While curation of molecular sequence data (i.e. resistance genes) is manageable, complex metadata on prevalence and drug resistance profiles (e.g. minimum inhibitory concentrations, association with bacterial genera and species) is often buried in the scientific literature. Yet, from a predictive and clinical perspective it is critical that we know the distribution of resistance genes around the globe, among pathogens, among infection types, environmentally, and in relation to patient demographics, as well as the range of antibiotics they act upon within each pathogen. Thus, the curation of knowledge and metadata from the published literature is a key challenge for AMR bioinformatics. However, development of algorithms for extraction of association and interaction information from the literature is a major area of research in the field of BioCuration and is actively used to enrich a number of biological databases [8–12]. In particular, algorithms for extraction of gene–gene or gene–compound interactions are making important contributions to genome annotation [13], construction of gene regulatory networks [9], and cataloging of drug-drug interactions [11] and we are pursuing similar algorithms to extract antibiotic resistance association and interaction data from the scientific literature for the CARD. For example, while manual curation of the CARD has been able to ensure inclusion of nearly all resistance genes, data on the range of antibiotics affected by these genes has proven difficult to compile given the volume of literature. While the CARD includes this information at a broad level, such as knowledge that aminoglycoside acetyltransferases (AACs) confer resistance to aminoglycoside antibiotics, it has not proven feasible for manual curation to compile the degree of resistance conferred by individual AACs to individual aminoglycosides. This level of detail, important for prediction of the antibiogram (the phenotypic resistance profile of a given strain) from genotype and varying among pathogens, does not currently exist in any AMR database. Similarly, text mining is needed to compile association of AMR genes among pathogens and regions, in relation to epidemiology, clinical metadata, and even means of dissemination (e.g. plasmid, horizontal gene transfer, transposable elements). Text mining will thus enable construction of a matrix of gene–gene associations, both within genomes or plasmids but also among pathogens, allowing analysis of genome sequences within a probabilistic framework, where algorithms can use association matrixes to predict antibiogram in the context of missing data based on detection of strongly associated molecular determinants.

Prediction of resistome and antibiogram

The increasing use of next generation whole genome sequencing (WGS) and whole community sequencing (WCS; a.k.a. metagenomics) is revolutionizing medical microbiology, resulting in a paradigm shift from phenotype to genotype-based diagnostics of resistance [14,15*]. We now have the capacity to rapidly and affordably sequence whole genomes to unlock the biology and epidemiology of pathogens. Equally important, we are on the cusp of an age where these technologies and research methods can translate to improved clinical outcomes, with rapid detection of drug resistance genes in infectious pathogens. The challenge is no longer acquisition of data, but analysis of data and we are facing bottlenecks in both the development of informatics tools to assess this flood of genomic information and in the training of the next generation of biomedical researchers and clinicians capable of harnessing these high-throughput data. Within the CARD, the Resistance Gene Identifier (RGI) currently provides prediction of resistance genes from DNA sequences based upon the curated data available in the CARD. The RGI analyzes genome sequences or assemblies relative to the CARD using BLAST and provides a detailed output of predicted antibiotic resistance genes and targeted drug classes. This includes
resistance to antibiotics via mutations in their targets (via an additional SNP screening step) or through dedicated antibiotic resistance gene products (enzymes, protective proteins, and efflux systems). The RGI is currently available as an online tool, but we are also developing a stand-alone command line tool for bulk analyses.

A number of resistance gene prediction tools have been created, such as Resfams [16] and ARG-ANNOT [17], yet like the RGI these focus upon detection of individual components of resistance. Just as AMR databases need to evolve into more than catalogs of resistance genes, AMR prediction software similarly needs to evolve beyond prediction of resistome. This approach has proven to have several limitations, not the least of which is that BLAST and HMM statistics lack fine resolution and require difficult decisions around cut-offs to avoid false positive predictions. Many AMR elements, such as the _canR_ and _vanS_ two-component regulatory system in the glycopeptide resistance regulatory system [18] or aminoglycoside acetyltransferases (over 50 orthologues), share a high degree of similarity to proteins with functions unrelated to resistance. In this case, BLAST hit cut-offs oversimplify a continuous spectrum of homology from protoresistance [19] to full-blown drug resistance. Furthermore, cataloging ignores both genomic and taxonomic context that is essential when predicting antibiotic. For example, Gram-positive bacteria are resistant to glycopeptide antibiotics via a suite of genes organized in an operon that confers resistance via re-structuring of the cell wall [18], yet the predicted resistome is not directly informative for antibiotic as Gram negatives are intrinsically resistant to glycopeptide antibiotics due to the impermeability of the outer membrane, regardless of resistome. What is needed are bioinformatics approaches for analysis of genome sequence that are tolerant of missing data such as unsampled sequence while simultaneously replacing simple sequence similarity with total evidence when predicting antibiotic. One possible solution is the development of Probabilistic Graphic Models (PGMs), which are a mathematical framework for incorporating uncertainty and probability when making predictions from limited or noisy data [20] and that have proven very successful in genomics research, particularly in analysis of regulatory networks, genetic association studies, and genetic architecture of complex diseases [21–23]. PGMs for antibiotic prediction could integrate pathogen and strain identification algorithms, analysis of cell wall biosynthesis pathways, regulatory context for efflux systems, detection of operons, and resistance by gene loss. PGMs could be designed to incorporate query data type, thus using different criteria for whole genomes, assembly contigs, raw sequence reads, or metagenomic sequence, as well as use priors such as laboratory generated antibiogram data to differentiate between expressed and silent portions of the resistome [24**]. Additional priors could be geographic location of patient, point of infection, strain identification, or other epidemiological data, allowing PGMs to take advantage of interaction and association matrixes to best predict antibiogram, probable pathogen or resistance gene given clinical context, new lateral gene transfer, or highlight spread of a resistant pathogen by travel or to a new subset of the population.

Research and construction of novel algorithms such as PGMs by the CARD and others will provide a fundamental advance in the prediction of antibiogram from genome sequences. Use of a probabilistic framework will additionally allow training of models using curated data and genome sequences, overcoming the limitations of manual curation of less powerful similarity cut-offs. Moreover, by use of different training sets models could be differentially tuned for detection of known clinically relevant resistance mechanisms or for detection of novel proteoresistance genes in the environment, allowing algorithms to be used for both clinical diagnosis and basic research into the evolutionary origins of AMR.

Data sharing & big data generation
The reliance upon phenotype in antibiotic surveillance programs means that we do not have an accurate understanding of the genomic landscape of AMR. Because resistance phenotype can be the effect of many different genes (or their combinations), we require a good understanding of the resistance gene burden to inform response, therapy and drug discovery. For example, gentamicin resistance can be the result of three different classes of modifying enzymes including adenyltransferases, acetyltransferases, and kinases [25]. Ribosome rRNA methyltransferases, including ArmA and Rmt enzymes, can protect the ribosome from gentamicin action [26] but efflux pumps (e.g. MexXY in _Pseudomonas_) and outer membrane import proteins can also contribute to gentamicin resistance [27]. All of these appear in antibiograms as gentamicin ‘resistant’ (R), yet they vary greatly in genotype and consequently mechanism. In addition, a strategy to directly inhibit resistance mechanisms with small molecules has proven clinical efficacy [28] and is growing in appeal as a way to extend the life of antibiotics in current clinical use. This requires an understanding of what are the most prevalent and important resistance genes in circulation in clinical pathogens. Furthermore, there is a growing understanding that the next generations of antibiotics will likely be targeted to a narrow spectrum of pathogens and to those with specific resistance elements [29**,30*,31], which will require new molecular diagnostics based on a thorough understanding of resistance genotype and molecular epidemiology of various geographical regions. Pathogens are mobile and can enter health care settings easily through patients, health care workers, visitors, or even food that may be colonized with organisms from around the globe. This means that sampling of pathogen genomes can be of great utility in managing antibiotic use and predicting resistance prevalence.
A proposed peer-to-peer strategy for global analysis of antimicrobial resistance (AMR) data. The Comprehensive Antibiotic Resistance Database (CARD) serves as the peer host, providing downloadable software and reference data for prediction of resistome and antibiogram from genome sequence, as well as maintaining the peer registry. Local copies of the CARD (i.e. peers) are installed at clinical and research locations around the globe for secure analysis and storage of local DNA sequencing efforts or to analyze the peer-supported global database of genome sequence and metadata. Each peer maintains their data locally for their own local use, instead of in a centralized resource, and sets their own data sharing rules, restricting allowable types of query from other peers. Each peer can share their data heterogeneously, such as allowing complete sharing of pathogen sequences but limited sharing of clinical metadata or disallowing sharing of individual data sets, perhaps due to data confidentiality agreements with patients. However, each peer can also analyze their local data relative to the entire peer network, providing a global context to local AMR challenges.

Figure 1

![Diagram](current-opinion-in-microbiology.com)
translate the knowledge and tools of AMR research to clinical outcomes, rapid surveillance and response, as well as enable best practice antibiotic stewardship by genotype-targeted use of antibiotics. Efforts like the CARD aim to push the field from phenotype-based clinical criteria to genotype-based predictive medicine and molecular epidemiology. However, a community effort is needed to develop standards for AMR data analysis and sharing, as AMR bioinformatics approaches need to be both reliable and nimble, particularly given that AMR data is not stable, but is instead in constant motion, both figuratively (e.g. creeping MIC values) and literally (e.g. plasmid-mediated lateral gene transfer). While the CARD and others are working toward this goal, the field is overdue for a systematic informatics effort to prepare for a world where routine, high-volume pathogen sequencing at laboratories, hospitals, and clinics is paired to bioinformatics and data sharing for public health monitoring and improved clinical outcomes.

Acknowledgements

A.G.M. holds a Cisco Research Chair in Bioinformatics, supported by Cisco Systems Canada, Inc. G.D.W.’s laboratory is funded by the Canadian Institutes of Health Research, the Natural Sciences and Engineering Research Council, and a Canada Research Chair. Open access icons in Figure 1 made by Freepik at www.flaticon.com.

References and recommended reading

Papers of particular interest, published within the period of review, have been highlighted as:

● of special interest
● of outstanding interest

2. Wright GD: Solving the antibiotic crisis. ACS Infect Dis 2015 ● http://dx.doi.org/10.1021/acsinfecdis.5b00052.

This review outlines an antibiotics to do list for overcoming antibiotic resistance ranging from molecular mechanisms to new chemistry.

Introduction of the Comprehensive Antibiotic Resistance Database (CARD), Antibiotic Resistance Ontology (ARG), and Resistance Gene Identifier (RGI).

This review outlines advances provided by whole genome sequencing in clinical settings as well as needed informatics advances.

A review of the resistome concept and its implications for clinical practice.

A nine part report from the Lancet Infectious Diseases Commission outlining global challenges in AMR.

A comprehensive discussion of barriers to development of new antimicrobial drugs and possible changes to their regulation.

Illustration of the power of comparative genomic analysis and genome-wide association studies to detect rare mutations with a possible role in antimicrobial resistance.